6 research outputs found

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Sensorized assessment of bilateral hand movements in patients with stroke driven by rhythmic auditory or visual-auditory stimulation

    Get PDF
    There is a growing body of literature about the efficacy in neurorehabilitation of the devices providing rhythmic auditory stimulations or visual-auditory stimulations, such as videogames, for guiding the patients' movements. Despite being presented as tools able to motivate patients, their efficacy was not been proven yet, probably due to the limited knowledge about the factors influencing the capability of patients to move the upper limbs following an external stimulus. In this study, we used a marker less system based on two infrared sensors to assess the kinematics of up and down in-phase and anti-phase bilateral hand oscillations synchronized or not with an external stimulus. A group of stroke survivors, one of age-matched healthy subjects and one of young healthy subjects were tested in three conditions: no stimulus, auditory stimulus, and video-auditory stimulus. Our results showed significant negative effects of visual-auditory stimulus in the frequency of movements (p = 0.001), and of auditory stimulus in their fluidity (p = 0.013). These results are conceivably related to the attentional overload required during the execution of bilateral movements driven by an external stimulus. However, a positive effect of external stimulus was found in increasing the range of movements of the less functional hand in all subjects (p = 0.023). These findings highlight as the type of stimulus may play a crucial role in the patient's performance with respect to movements that are not-externally driven

    Visuomotor Integration for Coupled Hand Movements in Healthy Subjects and Patients With Stroke

    Get PDF
    Many studies have investigated the bilateral upper limb coordination during movements under different motor and visual conditions. Bilateral training has also been proposed as an effective rehabilitative protocol for patients with stroke. However, the factors influencing in-phase vs. anti-phase coupling have not yet been fully explored. In this study, we used a motion capture device based on two infrared distance sensors to assess whether the up and down oscillation of the less functional hand (the non-dominant one in healthy younger and older subjects and the paretic one in patients with stroke) could be influenced by in-phase or anti-phase coupling of the more functional hand and by visual feedback. Similar patterns were found between single hand movements and in-phase coupled movements, whereas anti-phase coupled movements were less ample, less sinusoidal, but more frequent. These features were particularly evident for patients with stroke who showed a reduced waveform similarity of bilateral movements in all conditions but especially for anti-phase movements under visual control. These results indicate that visuomotor integration in patients with stroke could be less effective than in healthy subjects, probably because of the attentional overload required when moving the two limbs in an alternating fashion

    Differentiation among bio- and augmented- feedback in technologically assisted rehabilitation

    Get PDF
    Introduction: In rehabilitation practice, the term ‘feedback’ is often improperly used, with augmented feedback and biofeedback frequently confused, especially when referring to the human-machine interaction during technologically assisted training. The absence of a clear differentiation between these categories represents an unmet need for rehabilitation, emphasized by the advent of new technologies making extensive use of video feedback, exergame, and virtual reality. Area covered: In this review we tried to present scientific knowledge about feedback, biofeedback, augmented feedback and neurofeedback, and related differences in rehabilitation settings, for a more proper use of this terminology. Despite the continuous expansion of the field, few researches clarify the differences among these terms. This scoping review was conducted through the searching of current literature up to May 2020, using following databases: PUBMED, EMBASE and Web of Science. After literature search a classification system, distinguishing feedback, augmented feedback, and biofeedback, was applied. Expert opinion: There is a need for clear definitions of feedback, biofeedback, augmented feedback, and neurofeedback in rehabilitation, especially in the technologically assisted one based on human-machine interaction. In fact, the fast development of new technologies requires to be based on solid concepts and on a common terminology shared among bioengineers and clinicians

    Motor imagery and gait control in Parkinson’s disease: techniques and new perspectives in neurorehabilitation

    No full text
    Introduction: Motor imagery (MI), defined as the ability to mentally represent an action without actual movement, has been used to improve motor function in athletes and, more recently, in neurological disorders such as Parkinson’s disease (PD). Several studies have investigated the neural correlates of motor imagery, which change also depending on the action imagined. Areas covered: This review focuses on locomotion, which is a crucial activity in everyday life and is often impaired by neurological conditions. After a general discussion on the neural correlates of motor imagery and locomotion, we review the evidence highlighting the abnormalities in gait control and gait imagery in PD patients. Next, new perspectives and techniques for PD patients’ rehabilitation are discussed, namely Brain Computer Interfaces (BCIs), neurofeedback, and virtual reality (VR). Expert opinion: Despite the few studies, the literature review supports the potential beneficial effects of motor imagery interventions in PD focused on locomotion. The development of new technologies could empower the administration of training based on motor imagery locomotor tasks, and their application could lead to new rehabilitation protocols aimed at improving walking ability in patients with PD

    Motor Imagery and Sport Performance: A Systematic Review on the PETTLEP Model

    No full text
    The aim of this review is to critically analyze the evidence provided throughout the years regarding the application of motor imagery (MI) in sport performance, focusing on the PETTLEP approach. Among the different MI approaches, in fact, the PETTLEP model takes into account many different domains for increasing the performance of athletes. These domains include physical features, the environment, task-related aspects, timing, learning, emotion, and perspective
    corecore